Deep learning architectures for nonlinear operator functions and nonlinear inverse problems

نویسندگان

چکیده

We develop a theoretical analysis for special neural network architectures, termed operator recurrent networks, approximating nonlinear functions whose inputs are linear operators. Such commonly arise in solution algorithms inverse boundary value problems. Traditional networks treat input data as vectors, and thus they do not effectively capture the multiplicative structure associated with operators that correspond to such therefore introduce new family resembles standard architecture, but where acts multiplicatively on vectors. Motivated by compact appearing control of problems wave equation, we promote sparsity selected weight matrices network. After describing this study its representation properties well approximation properties.We furthermore show an explicit regularization can be introduced derived from mathematical mentioned problems, which leads certain guarantees generalization properties. observe improves estimates. Lastly, discuss how viewed deep learning analogue deterministic reconstructing unknown speed acoustic equation measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Nonlinear methods for inverse statistical problems

In the uncertainty treatment framework considered in this paper, the intrinsic variability of the inputs of a physical simulation model is modelled by a multivariate probability distribution. The objective is to identify this probability distribution the dispersion of which is independent of the sample size since intrinsic variability is at stake based on observation of some model outputs. More...

متن کامل

Inverse Problems for Nonlinear Delay Systems

We consider inverse or parameter estimation problems for general nonlinear nonautonomous dynamical systems with delays. The parameters may be from a Euclidean set as usual, may be time dependent coefficients or may be probability distributions across a population as arise in aggregate data problems. Theoretical convergence results for finite dimensional approximations to the systems are given. ...

متن کامل

Nonlinear random matrix theory for deep learning Nonlinear random matrix theory for deep learning

Neural network configurations with random weights play an important role in the analysis of deep learning. They define the initial loss landscape and are closely related to kernel and random feature methods. Despite the fact that these networks are built out of random matrices, the vast and powerful machinery of random matrix theory has so far found limited success in studying them. A main obst...

متن کامل

Frames , Sparsity and Nonlinear Inverse Problems ∗

This work is concerned with nonlinear inverse problems where the solution is assumed to have a sparse expansion with respect to several preassigned bases or frames. We develop a scheme which allows to minimize a Tikhonov functional where the usual quadratic regularization term is replaced by one–homogeneous (typically weighted `p, 1 ≤ p ≤ 2) penalties on the coefficients (or isometrically trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical statistics and learning

سال: 2022

ISSN: ['2520-2316', '2520-2324']

DOI: https://doi.org/10.4171/msl/28